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EXECUTIVE SUMMARY 
Deliverable D4.1, titled Advanced AI Paradigms for Human-AI Collaboration v1, is the first deliverable within 
WP4, AI/XR Symbiosis for Augmented Intelligence, which seeks to establish novel synergies between AI and 
XR technologies for enhanced human-AI collaboration in Industry 5.0 applications. The deliverable 
documents the initial progress of the development, implementation, and evaluation of innovative AI 
methodologies aimed at enhancing effective and seamless human-AI collaboration in XR5.0. It outlines the 
foundational AI frameworks, their initial pilot application scenarios and further refinements designed to 
address the objectives in WP4.  

This deliverable synthesizes efforts across three tasks, Task T4.1 – T4.3, focusing on explainable AI, 
Neurosymbolic AI, Active Learning and Generative AI models integration into the XR platforms of the 
project. The approach emphasizes a user-centric and ethical design philosophy, combining technical 
innovation with the development of tools and infrastructures that enable transparent decision-making, 
more efficient learning processes and dynamic content creation tailored to the industrial pilots of the 
project, while ensuring trust, adaptability, and seamless integration of AI technologies into XR 
environments.  

These advancements are aligned with Industry 5.0 goals of human-centric, robust, sustainable and resilient 
AI systems that are responsive to human input and supported by iterative development cycles and 
collaborative feedback from project stakeholders. 

Deliverable D4.1 serves as a baseline for the refinements and advancements to be detailed in Deliverable 
D4.2, Advanced AI Paradigms for Human-AI Collaboration v2, which represents the next iteration of D4.1.  
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1. INTRODUCTION 

1.1 Objectives of the Deliverable 
The primary objective of D4.1, Advanced AI Paradigms for Human-AI Collaboration v1, is to present the 
progress and advancements achieved in tasks 

• T4.1 – AI Models and Infrastructures for Trusted Human-AI Collaboration, 
• T4.2 – XR-Enabled Human-AI Collaboration (Neurosymbolic AI, Active Learning),  
• T4.3 – XR-Enabled Generative AI 

within WP4, AI/XR Symbiosis for Augmented Intelligence, of the XR5.0 project. This deliverable consolidates 
the efforts and outcomes achieved during Months 1–13 (M1–M13) of the project and highlights the 
advancements in AI methodologies and XR integration for augmented intelligence, including the initial 
implementation of these innovations in the project pilots. The objectives specific to each task are outlined 
as follows: 

Task T4.1 – AI Models and Infrastructures for Trusted Human-AI Collaboration 

T4.1 focuses on the integration of trustworthy AI models into XR solutions for Industry 5.0 applications, 
ensuring transparent, understandable and user-adaptive AI systems that foster effective human-AI 
collaboration. Main goals include: 

• Developing human-centred explainable AI (XAI) models tailored for industrial end-users that 
provide personalized, trusted recommendations and ensure ethical compliance and 
trustworthiness through responsible AI design. 

• Incorporating counterfactual methods for “what-if” analysis. 
• Building tools and infrastructures for efficient training, inference, and integration of XAI models into 

XR platforms within XR5.0. 

Task T4.2 – XR-Enabled Human-AI Collaboration (Neuro-Symbolic AI, Active Learning) 

T4.2 focuses on the development and integration of Neurosymbolic AI (NSAI) and Active Learning (AL) 
models into XR environments to enhance human-AI collaboration within Industry 5.0 applications, 
improving accuracy, efficiency and explainability of AI systems. Main goals include: 

• Developing Neurosymbolic and Active Learning AI models for XR-enabled human-AI collaboration 
• Integrating Neurosymbolic AI into XR-based industrial applications, combining deep learning and 

symbolic reasoning to create more robust and explainable AI models. 
• Integrating XR-enabled active learning techniques that involve humans in the machine learning 

process for better and faster results with XR interfaces to enable a natural interaction between 
humans and the AI systems. 

Task T4.3 – XR-Enabled Generative-AI 

T4.3 focuses on the development and integration of Generative AI models into XR environments to facilitate 
improved collaboration and enhanced creativity between humans and AI systems. Main goals include: 

• Leveraging Generative AI to create novel, context-aware content and solutions for more efficient 
and effective collaboration in various industrial scenarios. 

• Developing solutions based on state-of-the-art generative models, retrieval-augmented generation, 
agentic workflows and prompt engineering to enable real-time assistance based on proprietary data 
(e.g., technical manuals) to human users in I5.0 contexts via user-friendly interfaces for (e.g., chat, 
voice to voice). 
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1.2 Relation to Other Work Packages and Deliverables 

 

Figure 1 – Relation to Other Work Packages 

Figure 1 illustrates the interactions and dependencies between the various WPs and tasks of XR5.0 that are 
related with WP4. WP2 focuses on the design, implementation, and analysis of XR5.0 technologies, including 
the documentation of Open APIs (T2.5), the analysis of reference XR scenarios for Industry 5.0 applications 
(T2.1), and the development of technical specifications for XR5.0 components and technologies (T2.2). 
These tasks provide inputs to WP4.  

WP3 contributes to this integration through the task of personal data collection and analytics (T3.2), 
ensuring that data-driven insights feed into WP4. WP4, in turn, interacts with WP6, which include various 
deployment and operational activities, such as system implementation and management across tasks T6.1 
through T6.6. Finally, WP7 support the overall project exploitation and dissemination activities, ensuring 
the seamless interaction and flow of resources between these interconnected components. 

The integration of WP4 tools, including XAI, AL, NSAI, GenAI, and AR/VR visualization capabilities, with the 
XR5.0 reference architecture described in D2.2, for delivering advanced Industry 5.0 functionalities. This 
integration is depicted in the layered architectural framework, which incorporates the Business, 
Application, and Technology layers, as detailed in D2.2. The Business Layer emphasizes workflows and 
services that rely on XR-enhanced training, maintenance, and production monitoring, where tools like XAI 
provide interpretable insights, and GenAI powers dynamic content generation for operator assistance. For 
instance, Generative AI, facilitates the transformation of static user manuals into interactive, queryable 
formats accessible through the XR platform. This aligns with the XR5.0 objective of delivering value-added 
services such as immersive training and real-time operator guidance, which are essential for Industry 5.0 
scenarios.  

The XR5.0 platform facilitates the integration of AI models like XAI, NSAI, and GenAI as key components 
within the system, enabling capabilities such as operational optimization, scenario generation, and decision 
support. The Container Diagram from D2.2 highlights the orchestration role of the Central XR Hub, which 
consolidates these AI-driven functionalities while ensuring seamless interaction with AR/VR systems for 
visualizing real-time analytics and recommendations. The Technology Layer underpins this integration by 
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providing the necessary virtualization, deployment pipelines, and network connectivity. This setup ensures 
scalability and secure operation of XR applications across various pilots. 

1.3 Relation to Other WP4 Tasks  
The integration and workflow of advanced AI methodologies within WP4, highlighting the roles of NSAI, AL 
and GenAI are illustrated in Figure 2 - Figure 4, emphasizing their contributions to creating trusted human-
AI collaboration frameworks, dynamic content generation, and interpretability through XAI. Additionally, it 
discusses how these technologies connect to downstream tasks for deployment, refinement, and their 
application in immersive XR5.0 training platform. 

 

Figure 2 – T4.2, NSAI in relation to Other Tasks 

Figure 2 illustrates the workflow of WP4, emphasizing the development and integration of Neurosymbolic 
AI (NSAI) models (T4.2). Task T4.1 serves as the foundational component, creating AI models and 
infrastructures for trusted human-AI collaboration. It leverages inputs from key modules, including 
Context-Based Models (CBM) that, as described in section 4.2, is capable of extracting “concepts” leveraging 
LLM technologies, in order to make each dataset/AI model self-explainable and NSAI-ready. NSAI (T4.2) is 
trained on the contextually enhanced data offering a self-explainable model permitting also human-AI 
interactions. The outcomes from these tasks are directed to tasks T4.4 and T4.5, which facilitate the 
integration and visualization of AI explanations and recommendations, respectively. Finally, the results are 
fed into T6.3 for operational deployment and further connect to other WP6 tasks for implementation, 
testing, and refinement.  

Figure 3 illustrates the pipeline showcasing the utilization of Active Learning (AL) models (T4.2) for XR-
enabled Human-AI collaboration. In this context, AL is applied to improve the adaptability and efficiency of 
XR systems by iteratively relabelling data points to refine the learning process. AL operates independently 
of NSAI in T4.2, though in general, AL can be augmented by NSAI for more complex reasoning tasks. The 
insights generated by AL within T4.2 feed directly into T4.1, which provides XAI methods for trusted 
human-AI collaboration. From T4.1 and AL, the outputs are progressing to T4.4 and T4.5, where the focus 
shifts to the integration and visualization of AI and XAI outputs. T4.4 ensures that AI explanations are 
interpretable and accessible to end-users, enabling better understanding and trust in the system, while T4.5 
focuses on delivering recommendations tailored to specific contexts. These results are then routed to WP6 
for deployment and are further refined and implemented across downstream tasks. 
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Figure 3 – T4.2, AL in relation to Other Tasks 

 

 

Figure 4 – T4.3, GenAI in relation to Other Tasks 

Figure 4 illustrates the pipeline showcasing the role of generative AI (GenAI) models (T4.3) and its broader 
integration into the XR-enabled framework. T4.3 focuses on employing GenAI to dynamically create 
content, scenarios, and interactions specifically tailored to enhance XR systems. Beyond its standalone 
applications in T4.3, GenAI also plays a critical role in T4.1, where GenAI will be utilized as part of Human-
Centric XAI, enabling the generation of human-friendly explanations and contextual responses. 
Additionally, GenAI serves as a key interface for the XR5.0 training platform developed in WP5, facilitating 
immersive, personalized, and adaptive training experiences tailored to users' needs. The outputs from T4.3 
and their integration into T4.1 feed directly into T4.4 and T4.5. Task T4.4 use the combined capabilities to 
generate actionable and context-aware recommendations for users. 

1.4 Structure of the Deliverable 
The deliverable is structured systematically to present the progress for each task T4.1, T4.2 and T4.3 in a 
designated section.  
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• Section 2, following this introductory section, presents the technologies from Task T4.2, XR-Enabled 
Human-AI Collaboration (Neurosymbolic AI, Active Learning). 

• Section 3 presents the progress on Task T4.3, XR-Enabled Generative AI. 
• Section 4 presents the progress on Task T4.1, AI Models and Infrastructures for Trusted Human-AI 

Collaboration. 
• Section 5 concludes the deliverable. 

The technologies in each task are presented across several key dimensions addressing: 

• State-of-the-art, reviewing the current relevant technological developments, 
• Role and functionality, defining the specific contributions of the respective technology, 
• Component status, detailing the key components associated with the respective technology, 
• Evaluation, summarizing the early applications and validation of the technology, 
• Component resource requirements, specifying the infrastructure needs for applying the technology, 
• Installation and deployment guidelines to deploy the technology in real-world or pilot environments, 
• Demonstration scenarios and mapping to pilots, connecting the technology application to specific 

project pilots, 
• Challenges and limitations encountered or anticipated during the technology application in the 

project pilots, 
• Next steps towards further implementation, suggesting improvements or refinements based on 

current progress. 
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2. XR-ENABLED HUMAN-AI COLLABORATION 
This section aims to provide an overview of the Artificial Intelligence (AI) models that will be used for the 
purposes of the XR5.0 project. The European Commission has stated the necessity of the European industry 
to move towards Industry 5.0 standards, which include the adoption of human-centric activities for digital 
technologies, specifically AI. Furthermore, the need to up-skill European workers and provide them with 
digital tools to enhance their productivity and decision-making in their daily tasks is of paramount 
importance. Therefore, AI technologies applied in industrial environments need to be explainable and 
understandable by domain experts to enhance their capabilities. Neurosymbolic AI (NSAI) introduces a 
symbolic reasoning level to traditional AI models allowing domain experts to generate and/or extract 
semantic rules and reasoning out of “black-box” models. Active Learning (AL) introduces a level of 
interaction between a human actor and a model which increases algorithmic accuracy but also allows 
humans to interact directly with the AI. The following segments of this section will introduce the basic 
principles of NSAI and AL models and showcase how they match with XR5.0 pilots. 

2.1 Neurosymbolic AI 
In the past years, the advancements in the symbolic reasoning and the neural computation fields have given 
birth to a new scientific field called Neurosymbolic AI (NSAI). Symbolic AI, which dominated the early stages 
of artificial intelligence research, is characterized by its reliance on explicit rules, logic and structure 
knowledge representations. These systems excel in tasks that require reasoning, however they struggle to 
learn from raw data. 

Neural models on the other hand extract patterns from vast amounts of unstructured data and try to 
generalize and make predictions based on those patterns. However, these models are often criticized based 
on the lack of explainability. Neurosymbolic AI aims to create a synergistic framework that leverages the 
complementary strengths of symbolic and neural approaches. By integrating the robust reasoning 
capabilities of symbolic systems with the adaptive learning capabilities of neural networks, neurosymbolic 
AI endeavours to build more intelligent, flexible and interpretable AI. 

2.1.1 Brief Survey of State-of-the-Art 
The NSAI algorithms can be separated into 5 categories, a taxonomy firstly mentioned by Kautz [1]. 

• Symbolic[Neuro] refers to systems that combine the statistical capabilities of Neural Networks 
along with symbolic reasoning. Example of this category is Deep Mind’s AlphaZero [2], a 
reinforcement learning approach that given only the rules of the game and with no prior knowledge, 
achieved superhuman performance in the game of chess leveraging the statistical power of neural 
networks. The algorithm uses Monte-Carlo Tree Search for its symbolic part and estimates the value 
of states of the environment using Neural Networks. 

• Neuro|Symbolic usually consists of a pipeline where both Symbolic and Neural systems specialize 
on a specific task and collaborate in order to achieve the final results. Most neurosymbolic 
algorithms belong to this category. Some widely known algorithms that fall in this category are 
IBM’s neuro-vector-symbolic architecture [3], an architecture that combines Vector Symbolic 
architecture3 along with powerful Neural Networks that are able to extract features from images. 
Utilizing this architecture, the authors were able to achieve state of the art results on the Raven 
dataset [4]. Another very well-known algorithm of this category is the Neuro-symbolic visual 
question answering [5] by Yi et al, which is a model applied to the CLEVRER dataset [6],  a system 
capable of recognizing objects on an image and replying to questions regarding those images (how 
many cylinder objects, which object is the closer one, which is the biggest one etc.). 

 
3 VSAs are computational models that utilize high-dimensional distributed vectors and the algebraic properties of their 
robust operations to combine the strengths of connectionist distributed representations with structured symbolic 
representation. 



HORIZON-CL4-2023-HUMAN-01-CNECT-10135209 

D4.1 – Advanced AI Paradigms for Human-AI Collaboration | 15 
 

• Neuro:Symbolic→Neuro consists of systems that use symbolic rules in order to guide the learning 
process of the neural networks. One of the most relevant works is Logical Neural Networks (LNN) 
by Riegel et al [7]. The framework combines neural learning with symbolic logic, where neurons 
represent components of weighted logic formulas for interpretability. It performs omnidirectional 
inference, including first-order logic reasoning, and uses a contradiction-minimizing loss for 
robustness to inconsistencies. By bounding truth values, it supports probabilistic semantics and 
handles incomplete knowledge effectively. 

• NeuroSymbolic aims to map symbolic rules onto embeddings in order to be applied to a loss 
function as soft constraints. Logical Tensor Networks (LTNs), a framework proposed by Badreddine 
et al [8], is a neurosymbolic system that integrates querying, learning, and reasoning with data and 
abstract knowledge. It features Real Logic, a fully differentiable logical language that grounds first-
order logic elements onto data via neural computational graphs and fuzzy logic.  

• Neuro[Symbolic] systems enhance neural networks with the explainability and robustness of 
symbolic reasoning. Unlike Symbolic[Neuro], which uses symbolic reasoning to guide learning, 
Neuro[Symbolic] integrates symbolic reasoning directly into neural models, focusing on specific 
symbols under certain conditions. Neural Logic Machines, a framework proposed by Dong et al [9] 
combine neural networks for function approximation with logic programming for processing 
objects, relations, and logical structures. Trained on small tasks, they recover abstract rules and 
generalize to large-scale problems. 

2.1.2 Role and Functionality 
The NSAI component aims to provide a pipeline that will help with different tasks in the XR5.0 industry. 
The component will consist of 2 modules, a Neural Network (NN) part that will be responsible for tasks like 
object detection/ image recognition and a symbolic part that will be responsible for generating rules that 
will guide the training of the NN part.  

For each pilot where the module will be integrated, separate API will be provided that will receive images 
or videos as inputs and the outputs will depend on the goals of each pilot along with explanations for its 
response. Also, the rules extracted from each model will be pilot dependent and there will be a separate end 
point in the API for adding expert knowledge for the task’s rules.  

Each model will be trained offline for each specific task and will be uploaded in an online endpoint to 
produce the process of the image/ video and respond with the corresponding output. In most tasks, based 
on the implied rules the model has deducted, there will be a detailed explanation of the model’s output. To 
facilitate better knowledge extraction for assisting human experts, the model will use the implied rules to 
generate detailed explanations regarding its output.  

2.1.2.1 Component Status 
At its current stage, the component is classified as TRL 4, as it has only been tested in a lab environment. 

2.1.2.2 Evaluation 
At its current stage, the component uses the dataset (videos) provided by Pilot 3 (T6.4, EKSO pilot) as 
described in Deliverable D6.1. The goal of this component is to recognize anomalies and accurately identify 
their types at a satisfactory ratio. 

2.1.3 Computational Resource Requirements 
The NSAI component requires the following computational resources: 

• A minimum of 4 CPUs. 
• At least 12 GB of memory. 
• A minimum of 20 GB of storage. 

2.1.4 Installation and Deployment Guidelines 
To run the NSAI component, the following libraries are utilized: 
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• Python 
• Torch 
• Scikit-Learn 
• OpenAI 
• LTN 

2.1.5 Demonstration Scenarios and Mapping to Pilots 
The NSAI component is currently implemented for Use Case 3 of Pilot 3 (T6.4, EKSO pilot). This use case 
involves developing an AI-based process for the digital examination of CCTV images and videos, which will 
also incorporate XR technology. 

The role of the NSAI component is to identify the type of outlier detected by the anomaly detection 
component. This component can be used in Pilot 3 for the task of CCTV inspection. The NSAI component can 
act synergistically with the outlier detection component.  

In this process, the CCTV video would be uploaded and split into multiple frames (images). The outlier 
detection component would label certain images as outliers. For these outlier images, the NSAI component 
would aim to identify the type of outlier. 

First, it would extract relevant features from the images labelled as outliers. The most relevant features for 
the task would have been proposed by a large language model (LLM). The model can extract these features 
as embeddings, which would then serve as rules to categorize the various types of outliers. The results of 
the model's analysis would be fed back to the user.  

Additionally, this process could collaborate with the Active Learning component, allowing an expert user to 
label the final results as correct or incorrect. 

2.1.6 Challenges and Limitations 
The biggest challenge faced by this component is extracting distinctive features from the frames (images), 
as most frames from the CCTV inspection are highly similar. The component must be capable of identifying 
different features, which will then serve as rules to enable the neurosymbolic part, in collaboration with the 
outlier detection component, to categorize the type of outlier. 

Figure 5 – Pilot 3 NSAI interactions 
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2.1.7 Next Steps 
The next steps for the NSAI component are the integration with the Active Learning component that will 
enable the expert to provide feedback of the model’s output.  

Also, one of the next steps is to incorporate the Concept Bottleneck Models output from Task T4.1 and their 
output will act as symbolic rules in the tasks handled by the NSAI component.  

2.2 Active Learning 
The rapid advancements in the field of Artificial Intelligence (AI) and Machine Learning (ML) have imposed 
the necessity for development of new ways of interactions between humans and algorithms. Active 
Learning (AL) algorithms have long been used to label unlabelled datasets or introduce human import(s) 
when algorithmic uncertainty tends to rise. Due to the recent advancements in the field of AL it is important 
to separate different approaches based on the notion of who (algorithm or human) manages the learning 
process of the model. Based on traditional AL concepts the system (e.g. model) has full control of the 
learning process while interactive machine learning approaches tend to provide a closer collaboration 
between humans and learning systems. Immersive technologies which tend to create distinct environments 
between the physical, digital or simulated world can be of great value to interactive machine learning 
solutions, since they empower users/domain experts to make sophisticated decisions. 

2.2.1 Brief Survey of State-of-the-Art 
Active Learning (AL) is a subcategory of Machine Learning (ML). It aims to generate interactive 
questions/queries to label unlabelled datasets with the smallest annotation cost. AL could also be a semi-
supervised learning method as it might use both labelled and unlabelled data and request annotations for 
either existing or new examples only once, through iterative queries, thus increasing model accuracy. 
Furthermore, [10] AL solutions assume that different data samples of the same dataset tend to have 
different values in updating a model, thus they try to identify those cases of the highest algorithmic value. 
Although the identification of the “most important” samples in large datasets is one of the main benefits of 
AL approaches, [11] their difficulty of handling high dimensional data, urges for the combination of AL with 
Deep Learning (DL) solutions to achieve superior results. Solutions that combine both DL and AL solutions 
have been adopted in various fields including image identification [12], [13] and object recognition [14]. 

While identifying the most relevant samples or combining advanced DL techniques to enhance efficiency 
are of paramount importance, proper human intervention is of the same significance as well. In traditional 
ML and AL scenarios human interaction is minimal and is confined in building, modelling and testing 
algorithms thus creating the risk of generating static models which are difficult to scale and evaluate. Such 
limitation was highlighted by [15], which also identified the potential loss in identifying causal relationships 
and logical reasoning. It is worth mentioning that one of the key aspects of AL is the learning process of a 
given model. In traditional AL solutions [16] the model has full control over the learning process and the 
human input is limited in annotating unlabelled data or data points of high uncertainty. Interactive Machine 
Learning (IML) methods [17] provide closer interactions between models and the human factor by 
requesting information in an incremental way to improve algorithmic parameters and generate useful 
artifacts. Therefore, the need for new innovative interactions between ML solutions and human/domain 
experts has generated the field of Human-in-the-loop Machine Learning (HITL-ML) as defined by Munro 
[18]. HITL-ML approaches diverge from traditional AL solutions whose only focus is to increase algorithmic 
accuracy, by involving the human factor in such ways that also make humans more efficient and effective 
while interacting with the model. It should also be noted that part of the HITL-ML umbrella is also the field 
of [19] Machine Teaching (MT) approaches, which aim to provide “full control” of the learning process to 
the human expert by carefully defining the information/knowledge that they intend to inherit to the model. 

As already mentioned above, a wide variety of AL solutions have been applied for different tasks such as 
image classification and object recognition. According to [20], HITL-ML and more specifically IML 
approaches were successfully applied for image and video classification tasks. Interactive image 
segmentation was particularly useful for domain experts to highlight, mark or annotate the most important 
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parts of an image that were the most relevant to a given model. Such relevant work can be found in ilastik 
which was developed by [21] as a tool for (bio)image analysis to assist human users without significant 
computational expertise and [22] AIDE, which is a tool that assists ecological surveys by leveraging IML 
concepts. 

2.2.2 Role and Functionality 
The Active Learning component developed for the purpose of Task T4.2 of the XR5.0 project aims to 
enhance human-in-the-loop approaches by using immersive technologies to increase algorithmic accuracy 
and human cognition. Due to the needs and requirements of XR5.0 pilots, the AL component will be provided 
along with an object detection model that will be used either for detecting sensors in industrial 
environments or for outlier/anomaly detection tasks.  

Due to the different requirements expressed by the project’s pilots the AL component will be provided 
separately for each pilot. It incorporates video and image processing and introduces a semantic layer for 
the interaction between the human actors and the AI model. At its current state, it is designed to receive 
either videos and/or images for the image processing task and generate annotated output that is currently 
stored on a knowledge base and presented on human experts. Furthermore, it measures the algorithmic 
uncertainty of each output and incorporates human knowledge once the uncertainty levels fall under 
specific thresholds. Human experts are given the option to also trigger the AL component ad-hoc, in case 
they identify mislabelled outputs. The AL component is provided as a RESTful service to allow the 
interaction with other XR5.0 components and more specifically with the XR environments and the NSAI 
module. 

The AL component empowers domain experts to be in the forefront when using AI as it allows them to 
directly interact with the models in immersive environments, thus enhancing algorithmic accuracy, expert 
knowledge and human cognition. 

2.2.2.1 Component Status 
At its current stage, the component is classified as TRL 4, as it has only been tested in a lab environment. 

2.2.2.2 Evaluation 
At the current stage the component has used initial datasets (videos) provided by Pilot 3 (T6.4, EKSO pilot) 
to build the initial solutions for the Active Learning and the Outlier Detection components. The initial 
solution which proves as Proof of Concept was presented to the EKSO representative and was considered 
satisfactory. Since the original presentation EKSO has provided a larger dataset of CCTV video inspections 
which are currently being used for the extension of the models. It needs to be mentioned that regarding the 
AL component, the human input (expert/operator) was performed in a lab environment at this stage. 

2.2.3 Computational Resource Requirements 
The computational resource requirements for the components are as follows. 

Active Learning Component: 

• Num. CPUs >= 4 
• Memory >= 12GB 
• Storage >= 20GB 

Outlier Detection Component: 

• Num. CPUs >= 4 
• Memory >= 12GB 
• Storage >= 20GB 



HORIZON-CL4-2023-HUMAN-01-CNECT-10135209 

D4.1 – Advanced AI Paradigms for Human-AI Collaboration | 19 
 

2.2.4 Installation and Deployment Guidelines 
To build and run both Active Learning and Outlier Detection components the following packages are 
required: 

• Python 3.9.2 (or higher) 
• torch 2.5.1 
• Opencv-python 4.10 
• Docker 
• Docker-compose 

A docker file is also provided to build all necessary environments and packages. 

2.2.5 Demonstration Scenarios and Mapping to Pilots 
The Outlier Detection and Active Learning components are currently implemented for the purposes of Use 
Case 3 of Pilot 3 (T6.4, EKSO pilot). Use Case 3 of Pilot 3 requests the development of an AI based process 
for digital examination of CCTV images/videos which will also make use of XR technology.  

The current purpose of the AL component is to assist in detecting anomalies in an Outlier Detection 
scenario. The outlier detection objective is to carry digital examinations of CCTV images/videos with AL for 
EKSO’s Pilot 3, to assist human operators in identifying potential flaws in EKSO’s pipeline system. It aims to 
automatically detect outliers/anomalies/defects on the pipelines and alert operators by providing a Human 
in the loop element of the AI algorithms to assist human actors further improve their efficiency and 
accuracy. In its current stage, the component receives the CCTV video and splits it into a series of frames 
(images) for the outlier detection task. Considering that the given data set is unlabelled, the AL component 
is initially triggered to request from the user/operator the definition of an inlier and an outlier by 
annotating a series of sampled images. Consequently, the AL component “builds” the proper dataset that 
will feed the training of the Outlier Detection algorithm. Every time a new video is processed and split into 
frames/images, the outlier detection component is triggered to determine whether the given image is an 
outlier or an inlier; at the same time the uncertainty of its decision/prediction is measured and once it raises 
above a user defined threshold the AL component requests from the expert/operator to label the uncertain 
image(s). If the label provided by the expert/operator is different from the outlier’s detection component 
prediction, the AL component is triggered again to re-evaluate the algorithmic parameters of the outlier 
detection task to increase accuracy. At the end of the outlier detection task, the expert/operator is provided 
with the series of images that have been identified as anomalies and can interact with the system again in 
case an error is spotted. Therefore, there is a direct handshake between the Outlier Detection algorithm and 
the Active Learning component which aims to acquire all required human knowledge from the 
expert/operator to the model in a Human-in-the-loop scenario. An initial validation of the implementation 
has already been performed by EKSO experts and currently the implementation is moving towards 
automating all the steps of both Active Learning and Outlier Detection components. 

Pilot 1 (T6.2, KUKA pilot), Pilot 5 (T6.6, SPACE pilot) and Pilot 6 (T6.7, LNS pilot) have expressed interest 
in using the AL component for their activities. Pilot 1 and Pilot 6 have shared small datasets and the UPRC 
team is currently evaluating the feasibility of the solutions based on the given sets. Pilot 1 and Pilot 5 are 
mostly interested in using the AL solution in an Object detection scenario either in an offline or streaming 
manner, while Pilot 6 is evaluating the use of AL solutions to enrich their existing knowledge base. 

2.2.6 Challenges and Limitations 
The current limitation of the developed approach is twofold. First, the current approach is used in an offline 
manner, meaning the videos are split into a series of frames/images which are then analysed by the Active 
Learning and Outlier Detection components. The second limitation lies on the recognition of the outliers 
themselves. Currently a frame/image is recognised as an outlier (binary classification) or not. Therefore, 
the nature of the problem in EKSO’s pipeline network cannot be specified (e.g. water leakage, pipe 
corrosion, broken pipes, etc.) to further generate knowledge and assist operators. 
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2.2.7 Next Steps 
As stated above, at its current state the AL component is provided along with an Outlier Detection solution 
for the purposes of Pilot 3. Therefore, the initial goal is to assist the Outlier Detection component with an 
Object Detection task that will be used to specify the nature of an outlier (e.g. Broken pipe, etc.). To that end, 
we aim to use the NSAI component for the “creation” of additional knowledge of the frames/pictures and 
use them in combination with the Outlier Detection and Active Learning component, since it has been 
acknowledged by Pilot 3 (EKSO) that any additional information that can be provided by the AI components 
will be of great value to their experts and operators. 

Additionally, Pilot 1 (T6.2, KUKA pilot), Pilot 5 (T6.6, SPACE pilot) and Pilot 6 (T6.7, LNS pilot) are 
considering utilizing the AL component, particularly for applications in Object Detection scenarios as 
described in Deliverable D6.1. To that end, data provided by each pilot are currently being evaluated for the 
feasibility and development of solutions that cover each Pilot’s needs and requirements. Once this step is 
finalized our aim will focus in making the whole solution operational in streaming environments, thus 
making it real time. Since the interfaces will be built in an XR environment one of the main priorities will be 
the communication/handshakes between the AI components and the XR environment provided by CYENS. 
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3. XR-ENABLED GENERATIVE AI 
This section explores the integration of Generative AI technologies within XR environments to enhance 
human-AI collaboration, aligning with Industry 5.0 principles. It outlines the capabilities of the Large 
Language Model (LLM) Chat Engine, focusing on Retrieval-Augmented Generation (RAG) for delivering 
intelligent, context-sensitive assistance. The integration aims to revolutionize training and maintenance 
procedures in industrial settings by providing personalized, real-time AI support. Key components include 
a vector database for knowledge retrieval and a RESTful API to facilitate seamless interaction between XR 
devices and AI systems. This section further examines the technical implementation, evaluation, and 
challenges, concluding with next steps for system enhancement. 

3.1 Brief Survey of State-of-the-Art 
The landscape of artificial intelligence has been transformed by LLMs and Generative AI (GenAI), 
fundamentally changing human-computer interaction through natural language interfaces. Modern LLMs 
based on the Transformer architecture, including GPT-4, LlaMA, Gemini, and Claude, have become the 
foundation for developing innovative applications, particularly in code generation, chatbot support, and 
enterprise search and retrieval [23] [24]. 

Two key techniques have emerged as dominant approaches for leveraging LLMs in practical applications: 

1. RAG has become instrumental in enhancing LLM performance within enterprise settings. By 
combining generative capabilities with external knowledge retrieval, RAG addresses common LLM 
limitations such as factual inaccuracies and hallucinations [25]. Recent advances include: 

• Development of federated systems integrating diverse information sources. 
• Extensions supporting multi-modal, contextualized, and personalized question-answering. 
• Optimization strategies focusing on content design and modular, model-agnostic 

approaches [26]. 
2. LLM Agents represent an evolution in AI development, enabling autonomous execution of complex 

tasks across domains like robotics, gaming, and API integration [27]. In the agentic workflows, the 
LLM acts as orchestrator coordinating the tasks required by leveraging tools, functions and external 
systems. Recent research has focused on improving agents' decision-making capabilities through: 

• Implementation of the Retrieval-Augmented Planning framework 
• Enhanced utilization of contextual memory 
• Integration with both text-only and multimodal environments 

In relation to XR, novel LLMs are being researched for 3D object creation. MS2Mesh-XR presents a multi-
modal sketch-to-mesh generation pipeline that enables users to create realistic 3D objects in XR 
environments using hand-drawn sketches and voice inputs [28]. TRELLIS is a large 3D asset generation 
model which takes in text or image prompts and generates high-quality 3D assets in various formats, such 
as Radiance Fields, 3D Gaussians, and meshes [29]. Particularly relevant to XR5.0's training focus, 
applications based on ChatGPT's has been proposed enhancing student learning experiences, specifically in 
the context of construction hazard recognition and safety training [30].  

While GenAI's impact spans numerous fields - from academia and healthcare to agriculture and business 
management - a significant gap exists in professional development applications, particularly in integrating 
GenAI with training methodologies [31]. XR5.0 specifically aims to address this gap through innovative 
approaches to industrial training. 

However, implementing LLMs for specialized applications presents distinct challenges. While models excel 
at broad knowledge tasks, they often struggle with domain-specific contexts crucial for industrial 
applications. Current research focuses on developing methods and frameworks to enhance LLMs with 
specialized knowledge for industry and smart manufacturing applications. It's worth noting that the 
integration of LLMs with XR applications remains in its early stages, with few real-world industrial 
implementations currently documented. 
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3.2 Role and Functionality 
Task T4.3 introduces a novel approach to industrial training and applications by combining AI-powered 
conversational capabilities with immersive XR experiences, aligned with Industry 5.0's human-centric 
vision.  

The system architecture centres around two core components: 

1. An LLM Chat Engine that delivers intelligent, context-sensitive guidance 

2. A Vector database for integrating proprietary or domain specific knowledge 

This system can be integrated with XR devices to provide real time assistance to the user while the 
responses from the chat engine can be adapted to each user's individual needs. Figure 6 illustrates an 
indicative workflow for training which operates as follows: 

 

Figure 6 – Indicative Workflow between XR and the LLM Chat Engine 

When the user interacts with the system, they can ask questions verbally while wearing a VR headset. These 
verbal inputs are processed through a Speech-to-Text (STT) service, converting spoken words into text 
format suitable for AI processing. The VR Application, which manages the immersive environment and user 
interactions with virtual equipment, forwards this text to the LLM Chat Engine.  

The LLM Chat Engine is implemented as a RESTful service that exposes key endpoints for: 

• Chat interactions 
• Document management and knowledge base updates 
• Training session configurations 
• Orchestration of predictive maintenance, anomaly detection, and quality control tools  

The LLM Chat Engine processes queries using RAG, incorporating relevant information from use case 
specific technical documentation and manuals to provide contextually appropriate responses. If the user 
query requires it, the LLM will also employ predictive maintenance tools to support repairing and servicing 
processes. The generated response is then seamlessly integrated back into the VR environment, where it's 
presented through visual cues and step-by-step guidance. This creates a natural interaction flow where 
trainees receive expert-level guidance in real-time while practicing tasks in a virtual space. 

Task T4.3 service is also responsible for the uploading, processing and storing of these technical 
documentation and PDF manuals. Once the PDF is uploaded through the API endpoint, the processing 
begins where the large document is broken down into smaller, manageable chunks and then converted into 
numerical embeddings. Then these vectors are organized and stored in a structured index of a Vector 
database, that facilitates quick access and retrieval during user interactions. The stored data are then 
accessed by their respective query engines, which are all managed by one OpenAI Agent.  

This efficient data processing pipeline, from document ingestion to intelligent retrieval and LLM-powered 
response generation, forms the backbone of XR5.0's ability to provide end users with highly relevant, 
contextually aware guidance in real-time. 
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3.2.1 Component Status 
Figure 7 provides a high-level overview of the LLM Chat Engine designed to support interactive, knowledge-
enhanced responses to industrial XR-based environments. It demonstrates how various components work 
together to process user requests, retrieve relevant information, and deliver intelligent responses. 

 

Figure 7 – High-level overview of Task 4.3 LLM Chat Engine 

At the core of the system is the LLM Engine, which orchestrates communication between agents, manages 
prompts, and maintains conversation context. It integrates with a Vector Database for knowledge storage 
and retrieval, enabling the system to dynamically augment responses with relevant information through 
RAG. The architecture also incorporates modules for data injection, allowing new knowledge to be added, 
and agents to provide specialized analysis obtained from the other AI services of WP4 for enhanced 
decision-making. The system interacts with XR interfaces and applications, enabling immersive experiences 
by processing user queries and delivering context-aware responses. The current TRL of the LLM Chat 
Engine is 5-6 with target 7-8 at the end of the project. 

The following sections elaborate on the internal operations of the main components including information 
about their implementation, software, integration mechanisms and deployment. 

LLM Engine: 

The LLM Chat Engine's core intelligence is driven by the Prompt Manager Agent. It leverages OpenAI’s GPT-
4o model to orchestrate and process input queries. The agent triggers the required tools or processes to 
retrieve relevant information and synthesizes the final response. The implementation includes a set of 
dedicated query engine tools, with each tool specifically designed to handle queries related to technical 
documents or manuals of a specific use case. 

When processing a user query, the agent first evaluates the input and autonomously determines which 
query engine tools should be invoked. This selection process considers multiple factors, including the query 
content, document metadata, and user-specific context. 
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To facilitate accurate information retrieval, each query engine is enhanced with metadata, such as document 
title, author, and type. For example, a maintenance manual for a robotic arm can be tagged with its version 
number and manufacturer details, enabling precise matching to queries about specific models. such as 
document title, author, and type. This metadata enrichment enables the creation of document-specific tools 
that can be precisely matched to user queries. 

The Prompt Manager Agent may also call other specialized agents that assist the user in troubleshooting 
and problem-solving. These tools can be invoked when users require guidance on equipment maintenance 
or fault diagnosis, enabling the system to utilize external AI models provided by WP4 that can provide 
additional context to the user. 

The behaviour of the Prompt Manager is dictated by the prompt instructions, which are application-specific 
and include information about the available tools, guardrails (predefined constraints ensuring responses 
remain relevant, safe, and within specified guidelines), response format, and the overall objectives of the 
agent that are application specific and include information of the available tools, guardrails, response 
format and the overall objectives of the agent. 

The response generation process involves combining multiple information sources. Once the relevant text 
segments are retrieved from the source documents, the agent formulates a comprehensive response by 
integrating: 

• The retrieved document content 
• Context from the predefined system prompt  
• The user's chat history 
• Current training context 
• Outputs from other agents when necessary  

This orchestration of components enables the LLM Chat Engine to function as an automated reasoning 
engine that can decompose complex queries into manageable steps and leverage appropriate tools to 
provide accurate, contextual responses during training sessions. 

This service is made available as a REST API built using the FastAPI framework. It includes endpoints to 
make queries, inject documents, add or update system prompts, and manage user authorization and session 
handling. Authorization is implemented using API keys for secure access control, while session 
management supports context persistence across interactions, ensuring seamless user experiences during 
training sessions. The several required agents and tools were built with LlamaIndex and LangChain 
frameworks [32]. 

Knowledge Integration: 

The Knowledge Integration Component is comprised of four subcomponents that are described in the 
following subsections that create a data processing pipeline shown in Figure 8. 
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Figure 8 – Data and Knowledge Injection 

Document Parsing and Chunking: When a document is retrieved through the PDF uploading API, it is first 
converted to text. In the context of XR5.0, the system primarily deals with technical documents related to 
industrial equipment, such as user manuals, technical datasheets, maintenance reports and standard 
operating procedures. These technical PDFs can vary in length, complexity and quality, necessitating the 
use of different libraries for optimal text extraction. The choice of library depends on the specific 
characteristics of the technical document, such as the presence of images, tables, graphs or scanned content. 

For technical documents that are primarily text-based, like user manuals or standard operating procedures, 
the PyPDF2 library is used. PyPDF2 is a pure-Python library that can split, merge, crop, and transform PDF 
pages. It works well with standard PDFs and provides a straightforward method for extracting text content 
from technical documents with a simple layout. 

When processing more complex technical documents that contain a mix of text, images, tables, and graphs, 
like technical datasheets or product catalogs, the PyMuPDF library (also known as fitz) is employed. 
PyMuPDF is a Python binding for the MuPDF library, which is a lightweight and fast PDF, XPS, and E-book 
viewer. It can handle a wide range of PDF types and is particularly effective for extracting text from scanned 
technical documents using Optical Character Recognition (OCR) techniques. For example, a technical 
datasheet for a new industrial sensor, containing detailed product specifications, performance graphs, and 
comparison tables, would be better processed using PyMuPDF to ensure accurate text extraction while 
preserving the document's structure. 

For challenging technical documents, such as legacy maintenance reports or low-quality scanned images, 
the Tesseract OCR engine is utilized. Tesseract is an open-source OCR engine that supports a wide range of 
languages and can handle difficult-to-read text in images. It is useful for extracting text from poor-quality 
scanned technical documents or images with complex backgrounds. 

By leveraging these different libraries based on the specific characteristics of the technical PDF documents, 
XR5.0 ensures that the text extraction process is optimized for each case. This approach maximizes the 
accuracy and completeness of the extracted text, which is crucial for the subsequent chunking and 
embedding steps in the LLM Chat Engine pipeline. 

In addition to the extraction of the text, since these documents can be lengthy, spanning hundreds of pages, 
the text is divided into smaller segments or chunks. This chunking process is crucial for several reasons: 
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1. It enhances the relevance of the content retrieved from the vector database by ensuring that the 
embedded content contains minimal noise. 

2. It ensures that the text fits within the context sent to external model providers like OpenAI, 
considering the limitations on the number of tokens that can be sent per request. 

3. The choice of chunking technique, such as fixed-size chunking, can significantly impact the accuracy 
of the RAG process. 

In the context of XR5.0's use cases, the input documents are typically well-structured official manuals for 
industrial equipment. These manuals are organized into distinct sections and subsections, with answers to 
user queries often found in specific parts of the document. Consequently, using fixed-length chunking could 
result in incomplete responses. 

To address this issue, XR5.0's LLM Chat Engine employs the Unstructured framework for chunking. This 
framework partitions documents into semantic units called document elements. The system only resorts to 
text splitting when a single element exceeds the maximum supported chunk size. By doing so, most chunks 
contain one or more complete sections, preserving the coherence of the semantic units established during 
partitioning. 

Specifically, XR5.0 uses a “by title” chunking strategy, where the content under each title or heading is 
treated as a separate chunk. This method groups relevant information, such as process steps or tables with 
technical specifications, while maintaining the logical structure of the manual.  

By implementing this intelligent chunking approach, XR5.0 ensures that the information provided to users 
is comprehensive, accurate, and relevant to their queries. This contributes to the overall effectiveness of the 
AI-powered conversational training experience within the immersive VR environment. 

Embeddings Creation: After the technical documents have undergone the pre-processing stage, where 
they are parsed and chunked into smaller, more manageable segments, the next crucial step in XR5.0's LLM 
Chat Engine pipeline is to convert these text chunks into text embeddings. Text embeddings are a powerful 
technique that transforms textual data into high-dimensional dense vectors of real numbers, effectively 
capturing the semantic meaning and context of the text. 

The choice of embedding model plays a significant role in determining the quality and effectiveness of the 
text embeddings. Each embedding model works with a specific number of dimensions, where each 
dimension represents a unique semantic aspect of the text. In the context of XR5.0, several embedding 
models were considered, including OpenAI Embeddings, BERT, and MPnet. After evaluation, OpenAI 
Embeddings were selected due to their better performance and higher dimensionality. OpenAI Embeddings 
typically have 1536 dimensions, compared to 768 dimensions in other models like BERT and MPnet. The 
higher dimensionality allows for a more detailed capture of the semantic information within the text 
chunks. 

To generate the text embeddings, XR5.0 utilizes the OpenAI’s API, specifically the text-embedding-3-small 
model. This model demonstrated excellent performance in capturing semantic similarities and 
relationships between text fragments.  

By capturing the semantic meaning of the text chunks, the embeddings allow the LLM to identify and 
retrieve the most relevant information from the document database, even when the user's query does not 
contain exact matches to the document text. 

Vector Database: For storing these embeddings, a Vector Database is preferable over a traditional 
database. These specialized databases excel at performing rapid and precise similarity searches, in 
comparison to traditional databases. When a user query is converted to text embeddings, the vector 
database becomes the most suitable option for comparing the input against stored embeddings, enabling 
quick data retrieval and improving result relevance.  
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For Task T4.3 system development several different vector database systems, (Pinecone, Chroma and Faiss) 
were evaluated in terms of cost effectiveness and accuracy. Pinecone emerged as the most suitable option 
after the assessment, with detailed benchmarking results presented in a subsequent section. 

Beyond database selection, another significant part in the development of the system is metadata 
management, which is crucial for efficient embedding vector retrieval. By structuring metadata 
strategically, the system can significantly reduce the search space before applying vector similarity check. 

The similarity search within Pinecone uses the approximate nearest neighbours search algorithm. 
Evaluations showed that the most accurate results were consistently obtained by selecting the top three 
chunks most similar to the query. 

Query Engine Tools: The next phase of the document ingestion pipeline involves implementing a querying 
functionality depicted in Figure 9. For this purpose, the LlamaIndex and LangChain frameworks were 
chosen. Recognizing that the user typically references a small number of manuals within the documents 
uploaded by the organisation they work for, the system was designed to create dedicated query engines for 
each document. Each query engine is enriched with metadata including the document's title, author, and 
type, which helps define its specific scope and applicability. The LlamaIndex framework provides a flexible 
Query Engine interface that enables comprehensive querying of embedded document content. By creating 
document-specific query engine tools, the system can more effectively navigate and extract relevant 
information from specialized technical manuals. These query engines are managed by the Prompt Manager 
Agent.  

 

Figure 9 – Retrieval Augmented Generation (RAG) for Query Answering 

3.2.2 Evaluation 
To ensure the scalability and optimal performance of the retrieval system across diverse documents and 
question types, evaluation and benchmarking of various chunking strategies, embedding models, and vector 
databases was performed. The evaluation process and final retrieval outcomes were assessed using 
RAGChecker [33], an evaluation framework specifically designed for RAG systems.  

The experiment focuses on testing three recognized strategies for each core function of the LLM Chat 
Engine—chunking, embeddings, and vector databases—to identify the most effective combination. The 
selection of parameters for testing was guided by both practical considerations and current industry 
standards in RAG implementations. For chunking methods, we tested fixed-length approaches at 1024 and 
2048 tokens, representing common practice in production systems, along with context-based chunking to 
evaluate potential improvements in semantic coherence. The embedding models selected included 
OpenAI's text-embedding-ada-002 and text-embedding-3-small, chosen for their widespread adoption and 
documented performance, complemented by HuggingFace's all-mpnet-base-v2 as a leading open-source 
alternative. For vector databases, we evaluated FAISS, Pinecone, and Chroma based on their production 
readiness and established adoption in enterprise environments. This parameter selection ensures that our 
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evaluation results remain relevant for real-world implementations while exploring key alternatives in each 
component category. 

This assessment aimed to further evaluate the retrieval system's performance across various types of user 
manuals by utilizing three PDFs representing different equipment from distinct manufacturers. 
Additionally, the PDFs differed in size. This approach ensured that the structural layout of the documents 
varied and added complexity to the evaluation.  

After establishing the combinations of chunking, embedding models, and vector databases, the query engine 
was tested using 20 queries for each combination across all PDFs. These queries, which were potential 
questions users might ask during training, covered various sections of each document and were selected by 
the developer. Additionally, RAGChecker requires ground truth answers for all queries to enable later 
evaluation. The ground truth answers comprised complete, unmodified text segments from the source 
documents that addressed each query. This approach enabled precise validation: RAGChecker could verify 
that every claim in a response was directly supported by the retrieved document segments, thereby 
detecting any information not present in the source material as hallucination. 

In total, 1,620 queries were evaluated across the 3 PDFs, with each query tested using 3 different chunking 
strategies, 3 embedding models, and 3 vector databases. For each query, two retriever metrics—Claim 
Recall and Context Precision—and two generator metrics—Hallucination and Faithfulness—were 
recorded. 

Retriever Metrics 

• Claim Recall: The proportion of ground truth claims covered by the retrieved chunks.  
• Context Precision: The proportion of retrieved chunks that are relevant.  

Generator Metrics 

• Hallucination: The proportion of incorrect claims not found in any retrieved chunks.  
• Faithfulness: How closely the generator's response aligns with the retrieved chunks. 

 For each combination of chunking, embedding model, and vector database in each PDF, the 20 queries were 
averaged to obtain a single value for each metric. The evaluation was conducted through a complete grid 
search, testing all possible combinations simultaneously rather than keeping components fixed. The results 
from these comprehensive combinations were then aggregated, which enabled the calculation of average 
metrics for each individual component (chunking strategy, embedding model, and vector database) while 
accounting for their performance across all possible combinations with the other components. This 
processing enabled the identification of which combinations yielded the desired results and provided the 
average metrics for each chunking strategy, embedding model, and vector database across all queries, 
regardless of the combinations used. The results are presented in Table 1 - Table 3 below. 

Table 1 – Chunking strategy evaluation 

Chunking 
Strategy  

Claim Recall  Context 
Precision  

Hallucination  Faithfulness   Rank  

Fixed 
length=2028 

97.12 99.05 3.59 91.14 2 

Semantic 
Context 

93.05 99.13 0.21 99.07 1 

Fixed 
length=1024 

85.41 95.37 4.51 95.49 3 
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Table 2 – Embedding model evaluation 

Embedding 
Strategy  

Claim Recall  Context 
Precision  

Hallucination  Faithfulness   Rank  

OpenAI - ada 93.7 98.6 3.56  96.49 3 

Mpnet 95.28 99.4 5.37 90.28 1 

OpenAI - small 86.61 96.47 1.06 98.97 2 

 

Table 3 – Vector Database evaluation 

Vector Store   Claim Recall  Context 
Precision  

Hallucination  Faithfulness   Rank  

Pinecone 93.37 97.22 2.54 96.5 1 

Chroma 92.11 98.05 2.01 95.18 2 

Faiss 90.11 98.05 3.21 94.48 3 

 

3.3 Computational Resource Requirements 
The computational infrastructure required for the XR-enabled Generative AI system is designed to ensure 
scalability, performance, and integration flexibility. The system utilizes Docker containers for deployment, 
ensuring consistent performance across environments. The LLM Chat Engine leverages OpenAI's API, which 
offloads intensive computational tasks to cloud-based infrastructure, minimizing on-premises hardware 
demands. A minimum of 2 vCPUs and 4 GB of RAM is recommended for managing API requests, processing 
user queries, and enabling real-time interactions, though resource requirements may scale based on the 
number of concurrent users. 

For knowledge retrieval, Pinecone is employed as the vector database, offering scalable and high-
performance embedding storage and similarity search capabilities. Storage needs are determined by the 
size of uploaded documents and embeddings, with a suggested baseline of 50 GB SSD for indexing and 
retrieval. Furthermore, a database such as PostgreSQL is necessary for user and session management to 
handle authentication, session tracking, and user-specific data storage effectively. 

For knowledge retrieval, Pinecone serves as the vector database, providing scalable and high-performance 
embedding storage and similarity search capabilities. Storage requirements depend on the size of uploaded 
documents and embeddings, with an estimated baseline of 50 GB SSD for indexing and retrieval. 
Additionally, a database for user and session management, such as PostgreSQL is essential to handle 
authentication, session tracking, and user-specific data storage. 

3.4 Installation and Deployment Guidelines 
The LLM Chat Engine is containerized using Docker to ensure consistent deployment across different 
environments. The deployment process follows these straightforward steps: 

1. Repository Setup:  
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• Clone the repository (https://github.com/giorgosfatouros/XR5.0-LLM-ENGINE) to your 
local environment 

• Navigate to the project's root directory 

2. Configuration:  

• Configure the OpenAI API key in the following files:  
▪ Dockerfile 
▪ docker-compose.yml 

3. Build Process:  

• Build the Docker image by executing:  

▪ docker build -t llm-engine . 

4. Deployment:  

• Launch the service using Docker Compose:  

▪ docker-compose up 

5. Test the API with Curl: 

• curl --location 'http://0.0.0.0:8000/api/chat' \ 

--header 'Content-Type: application/json' \ 

--data '{“query”: “How can you help me?”}' 

This containerized approach ensures that all dependencies and configurations are properly managed, 
making the deployment process reliable and reproducible across different environments. 

3.5 Demonstration Scenarios and Mapping to Pilots 
Some Demonstration scenarios aligned with XR5.0's pilot implementations include: 

1. Visual Inspection and Anomaly Detection Training: 
• Supports EKSO's smart pipes pilot by providing real-time AI guidance for inspection 

procedures 
• Assists trainees in identifying potential anomalies by leveraging knowledge from technical 

documentation 
• Provides context-aware responses based on the trainee's position in the VR environment 

and current inspection task 
2. Condition-Based Maintenance Training: 

• Provides AI-powered assistance for interpreting maintenance indicators 
• Offers step-by-step guidance for predictive maintenance procedures 

3. Remote Support Integration: 
• Enables real-time support during VR-based maintenance simulations 
• Provides context-aware responses considering the trainee's current task and environment 
• Delivers personalized guidance based on trainee expertise level and task complexity 

As presented in D6.1, Task T4.3’s functionalities are relevant to various pilots of the project especially in 
use cases requiring technical training. For example, Pilot 1 (T6.2, KUKA pilot) is currently planning to 
integrate LLM functionalities into their use cases. Additionally, there are ongoing discussions to extend 
these integrations to Pilot 4 (T6.5, TAP pilot) and Pilot 5 (T6.6, SPACE pilot) to enable Generative AI’s 
capabilities for industrial training through the XR5.0 Training Platform. These efforts aim to ensure that the 
task supports real-time assistance and training in an agnostic manner across all pilots. 
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The LLM Engine's flexible architecture allows it to effectively support these diverse pilots while maintaining 
consistency in knowledge delivery and personalization capabilities across different pilot implementations. 
Currently, Task 4.3 is being validated in Pilot 3 (T6.4, EKSO pilot) and it is planned to empower the training 
platform of WP5. 

3.6 Challenges and Limitations   
Testing the RAG performance revealed promising results in delivering contextually relevant and accurate 
responses. However, several limitations were identified. First, the evaluation primarily focused on technical 
feasibility rather than comprehensive end-user testing. While integration with an AR app (provided by Task 
4.5) validated the technical setup, it did not measure usability and user experience. The AR app successfully 
demonstrated query submission from Unity and responses via the LLM Chat Engine using proprietary 
knowledge retrieval, but the interface was optimized solely for validating integration rather than full-scale 
deployment. Future testing will emphasize in user feedback from pilot users to refine performance and 
optimise the system’s logic. Addressing these constraints is essential to achieve higher TRLs. 

3.7 Next Steps 
To address the identified limitations, future efforts will focus on conducting user-centric evaluations to 
assess usability, response accuracy, and contextual relevance within XR applications. Iterative updates to 
the chat engine will be guided by user feedback. Furthermore, Task T4.3 will specify and define more 
precisely how to adapt the system for each pilot's unique requirements. While Pilot 3 (T6.3, EKSO pilot) 
documentation has been successfully incorporated into T4.3, the architectural design for Pilot 1 (T6.2, 
KUKA pilot) demands specialized knowledge modelling to handle complex robotic system documentation 
and maintenance procedures. The expansion to Pilot 4 (T6.5, TAP pilot) and Pilot 5 (T6.6, SPACE pilot) will 
require custom indexing strategies to effectively manage aerospace maintenance protocols and SPACE’s 
technical specifications. These pilot-specific implementations will be coordinated through the XR5.0 
Training Platform, ensuring a standardized yet flexible approach to industrial training. 

Performance optimization will target the implementation of personalization features to adapt responses 
based on user progress, training contexts, and positioning in the VR/AR space, improving relevance and 
engagement. A monitoring framework, based on LLM observability tools, will be developed to track user 
interactions and refine the system continuously based on real-world usage data. Additionally, the system 
will incorporate external APIs and services (e.g., other AI systems developed in WP4) through LLM-
orchestrated knowledge connectors, enhancing domain-specific capabilities across various industrial 
scenarios. Each pilot's unique data structure will inform the development of custom retrieval techniques, 
ensuring optimal performance for their specific use cases. By focusing on these enhancements, the system 
will progress towards higher TRLs, delivering robust AI-powered solutions that align with XR5.0 objectives. 
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4. AI MODELS FOR TRUSTED HUMAN-AI COLLABORATION 
This section outlines the development and application of AI models tailored to achieve trusted human-AI 
collaboration within the XR5.0 framework. It outlines the explainable AI (XAI) methodologies and ontology-
driven semantic approaches to address the integration of trustworthy and transparent AI outputs within 
the XR environments. The integration aims to enhance human understanding, build user trust and enable 
dynamic, context-aware decision-making by providing clear and interpretable AI outputs that align with 
user expectations and domain-specific requirements. This approach ensures that AI systems within XR 
environments are not only technically robust but also intuitive and adaptable, supporting seamless 
collaboration between humans and AI. The following parts of this section introduce an XAI suite and an 
ontology-driven semantic methodology for XAI, and how they can be demonstrated within the XR5.0 pilots. 

4.1 Explainable AI Models  

4.1.1 Brief Survey of State-of-the-Art 
The manufacturing sector is experiencing a paradigm shift driven by the adoption of AI technologies, with 
image classification and Large Language Models (LLMs) emerging as main technologies. AI applications in 
manufacturing span a wide range of areas, including predictive maintenance, quality control, process 
optimization, supply chain management, and intelligent decision support systems. As these AI applications 
become more sophisticated, the need for Explainable AI (XAI) has grown. 

Image classification has become a cornerstone of quality control and process optimization in 
manufacturing: 

• Visual Quality Control: AI-powered image classification systems are being deployed to detect 
defects and anomalies in real-time, significantly improving product quality [34]. 

• Statistical Process Control: Advanced approaches like Visual Machine Learning Control (VMLC) 
combine classification with anomaly detection to enhance robustness in high-throughput 
manufacturing lines [35]. 

• Defect Classification: Machine learning algorithms are being used to classify defects, enabling more 
efficient screening of potentially faulty parts in manufacturing applications [36]. 

LLMs are transforming communication and decision-making processes in industrial settings. Fine-tuned 
LLMs, such as GPT-3.5 Turbo and Gemini 1.5 Pro, are being developed to assist human operators by 
providing targeted, accurate responses in real-time for product management and production line 
operations [37] [38]. 

Specific XAI Models and Techniques: 

• LIME (Local Interpretable Model-agnostic Explanations) [39]: This technique has been applied to 
enhance the robustness of datasets against gradient evasion attacks in manufacturing image 
classification tasks. 

• Grad-CAM (Gradient-weighted Class Activation Mapping) [40]: Used for creating visual 
explanations for decisions made by convolutional neural networks in manufacturing image 
classification [41]. 

• Integrated Gradients: This method attributes the prediction of a deep network to its input features, 
providing insights into the model's decision-making process [41]. 

• DeepDream Representations: Used in conjunction with multiple classifiers to enhance the 
interpretability of convolutional neural networks in histological image classification [42]. 

These XAI techniques are being integrated into AI enhanced manufacturing environments to create more 
transparent, adaptive, and user-centric systems that can seamlessly integrate with existing industrial 
processes while addressing the unique challenges of the manufacturing sector. 
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4.1.2 Role and Functionality 
The XAI components developed for this project build upon solutions designed under the STAR (H2020) and 
HumAIne (HEU) initiatives, and they include complementary approaches to explainability: 

• Glass-Box Models: Designed for inherently interpretable outputs through human-centric, concept-
driven models that embed interpretability directly into the AI process. 

• Post-Hoc Methods: Advanced tools that provide explanations for black-box models, allowing 
integration into existing workflows without retraining. 

• Human-Centric GPT-Based Interaction: A conversational interface leveraging large language models 
(LLMs) for intuitive and interactive AI explanations. 

These components ensure a balance of transparency, usability, and flexibility, catering to various industrial 
requirements and levels of domain expertise. Each component has been validated in controlled 
environments and early-stage pilot implementations, demonstrating their readiness for integration into 
diverse applications. 

 

Figure 10 – CBM intermediate layer of neural network components 

Glass-Box Models: 

Concept Bottleneck Models (CBMs): CBMs enhance interpretability by aligning neural network 
components with human-understandable concepts. They achieve this using an intermediate layer, as shown 
in Figure 10, where neurons represent interpretable concepts guiding final predictions. This approach 
provides transparency while allowing users to intervene directly, incorporating their expertise to influence 
model predictions. The initial testing has been applied with CUB 
dataset4, image datasets like CUB, are widely used in AI research, 
provide a reliable medium for showcasing the tool's versatility and its 
potential to handle both image and video-based applications within 
XR5.0. 

However, traditional CBMs face challenges such as reliance on 
labelled data and a trade-off between accuracy and interpretability in 
complex datasets. These limitations hinder scalability and adoption. 
Data collection also risks inconsistency and bias, especially when 
human annotations define concepts. Advances with LLMs like GPT-
3/GPT-4 address these issues by automating concept generation 
through dataset-specific prompts, eliminating manual labelling. 
When coupled with NSAI, CBMs go beyond their traditional role by 
enabling context-driven reasoning and rule generation. NSAI can 
leverage the extracted concepts from CBMs to transform them into 
formalized rules that represent the underlying logic of the data. These 
rules are then utilized within NSAI's symbolic reasoning framework, 

 
4 Wah, Catherine, et al. “The caltech-ucsd birds-200-2011 dataset.” (2011). 

Figure 11 – JSON of raw concepts 
extracted using LLM from class-names 



HORIZON-CL4-2023-HUMAN-01-CNECT-10135209 

D4.1 – Advanced AI Paradigms for Human-AI Collaboration | 34 
 

allowing for advanced decision-making processes that combine data-driven insights with structured, logical 
reasoning. For instance, in XR5.0 applications such as image and video recognition, CBMs can extract high-
level features (e.g., “long beak,” “bright plumage”) from datasets using context provided by LLMs. NSAI can 
then transform these features into symbolic rules (e.g., “IF bright plumage AND long beak, THEN likely 
category: tropical bird”).  

LLM-powered CBMs enable dynamic user interactions during inference, allowing users to adjust concept 
activations to refine predictions (human-in-the-loop approach). This transforms CBMs into collaborative 
platforms integrating domain expertise in real-time, bridging automated intelligence and human insight 
while fostering trust. This attribute of CBMs is highly correlated with AL component (Section 4.3). 

In XR5.0, image recognition tasks are a key focus, and the inclusion of video data 
further underscores the tool's relevance. Video data, often pre-processed into frames 
treated as individual images, aligns seamlessly with the tool's capabilities. These 
frames contain intricate patterns such as shapes, colors, and textures, making them 
ideal for testing and evaluation. 

Once data is uploaded, the tool uses class names from the dataset as targets for 
classification tasks. It queries a large language model (LLM) to extract key features for 
each class name, organizing these features in a structured JSON format (Figure 11). 
Since all classes belong to the bird superclass, some concepts appear across multiple 
classes. A multi-step filtering process refines the concept set by removing overly long, 
redundant, or irrelevant concepts and ensuring quality through a similarity threshold 
evaluation (Figure 12). 

The refined concepts train CBM networks and produce predictions with concept 
importance attribution (Figure 13). Concepts negatively impacting predictions are 
marked with “NOT” to indicate their absence or inverse contribution, while positive 
contributors are listed with their impact. For instance, if “NOT a rosy breast” 
influences a decision, it reflects the a2bsence of this feature in the model's reasoning. 
Users can refine predictions by adjusting or nullifying a concept’s influence, 
promoting trust and control. This task will be coupled with NSAI (T4.2) offerings. 

Figure 12 – Filtered 
concepts through 

iterative filtering process 
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Figure 13 – CBM prediction for a single image with concept importance attribution 

Post-Hoc XAI Methods: 

XAI can significantly enhance industrial visual inspection systems by making their machine-learning 
components more transparent and interpretable. These systems utilize cameras or other sensor to capture 
images of products or processes, analyze them with machine learning algorithms and identify defects or 
abnormalities. However, machine-learning models often lack interpretability, making it challenging for 
operators to understand their reasoning, especially when errors occur. XAI techniques address this 
limitation by providing clear and interpretable insights into how decisions are made.  The primary aim of 
incorporating XAI into visual inspection systems is to reduce the cost and time associated with manual 
inspections while allowing workers to focus on more meaningful, less repetitive tasks. By bridging the gap 
between AI and human operators, XAI will explain predictions made by CNNs that analyze image data for 
identifying defects in manufactured parts. These explanations will increase confidence in AI-driven 
decisions and assist workers in handling complex inspection tasks that require human judgment. The XAI 
component will provide explanations in terms of attribution scores, offering insights into the importance of 
each input feature for a particular prediction. For image data, this importance can be visualized as heatmaps 
where pixel contributions are displayed in varying colors, helping operators locate defects efficiently during 
manual revisions. 

To implement this component, we are experimenting with various off-the-shelf XAI libraries, either as part 
of the final system or as benchmarks for comparison. Key libraries include: 

• LIME (Local Interpretable Model-agnostic Explanations): Accessible via pip, LIME supports 
multiple data modalities, including vectors, images, and text. It is model-agnostic and interacts 
directly with the model's predict() method. While lightweight and not reliant on GPUs for standard 
use, it may face limitations with highly complex models or large datasets. 

• SHAP (Shapley Additive Explanations): SHAP offers a model-agnostic framework to quantify 
feature contributions. While primarily designed for tabular and scalar data, it can be extended to 
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images through random masking techniques. However, its application to image classification can be 
less effective, as interpreting pixel-level SHAP values for complex visual patterns poses challenges. 
Nonetheless, SHAP serves as a useful baseline for explainability in timeseries and other modalities. 

• Grad-CAM (Gradient-weighted Class Activation Mapping): Specifically designed for CNNs, Grad-
CAM generates visual explanations by leveraging gradients flowing through the network. It 
highlights image regions that contribute most to the model's predictions (Figure 14). The pip 
package supports PyTorch and GPU-accelerated implementations, making it a powerful tool for 
deep learning models when access to weights and architectures is available. 

These Python-based libraries integrate seamlessly with XR5.0's use cases, offering scalable and 
interpretable solutions for the project. By using these tools, Task T4.1 aims to create an XAI suite that not 
only enhances AI-driven visual inspection systems but also aligns with the transparency and 
trustworthiness requirements of Industry 5.0 applications. 

 

Figure 14 – Example of Grad-CAM model heatmap output 

Human-Centric XAI with LLMs: 

The XAI suite for XR5.0 represents a significant advancement in human-centric explainability for black-box 
AI models, providing a multi-layered approach to interpretability. Designed to address the inherent opacity 
of complex AI systems, the suite combines advanced post-hoc methods with user-tailored explanations. 

At its core, the XAI suite integrates widely used interpretability tools such as SHAP, LIME and Grad-CAM to 
decompose model predictions into feature-level contributions. These tools have been implemented within 
a LLM capabilities enhancing usability and accessibility. A distinguishing feature of the suite is its emphasis 
on personalization. By dynamically tailoring explanations to align with the user’s domain knowledge, the 
suite ensures that insights are relevant and comprehensible. 

In technical demonstrations, the XAI suite has successfully aggregated outputs from methods like SHAP and 
LIME, transforming them into actionable natural language insights. For instance, it can summarize key 
features influencing model predictions, visualizing their impacts as heatmaps or graphs, and providing an 
overarching explanation tailored to user queries (Figure 15). 
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Figure 15 – Natural Language explanations based on output of post-hoc XAI (SHAP & LIME) 

4.1.2.1 Component Status 
The XAI suite, implemented as a stand-alone module for a technical demonstration, is currently at 
Technology Readiness Level (TRL) 4-5, indicating that it has been validated in controlled environments and 
through prior applications in other projects. The suite is designed to define and train explainable models, 
emphasizing versatility and broad applicability across diverse datasets and use cases. By being data-
agnostic and use-case-agnostic, the XAI suite is adaptable for seamless integration into various XR5.0 
scenarios, supporting the project's objectives of transparency and trust in AI-driven decisions. 

The suite comprises four main components: a user interface, a data ingestion and storage service, a model 
training service, and an inference service. These components are implemented as Dockerized microservices 
that communicate through REST APIs, ensuring platform-agnostic and interoperable communication. The 
use of containerization encapsulates dependencies and runtime configurations, enabling consistent 
deployment, efficient scalability, and straightforward updates. At its current TRL, the suite’s user interface, 
developed with Streamlit, provides an intuitive platform for uploading datasets, selecting models, and 
initiating training tasks. The data ingestion and storage service, implemented as a Flask microservice, 
manages dataset validation, cleaning, and secure storage, ensuring maintainability and scalability. The 
model training service, also Flask-based, handles resource-intensive training processes in an isolated 
environment, enabling experimentation and updates without impacting other system components. The 
inference service provides a scalable mechanism for generating predictions via REST endpoints, with the 
flexibility to adapt to increased demands or enhancements independently. The XAI suite’s TRL4-5 status 
reflects its readiness for integration and deployment in XR5.0 pilot environments. Initial demonstrations 
will focus on Pilot 3 (predictive maintenance for smart water pipes), where it will analyze video data 
processed frame-by-frame to detect anomalies and provide actionable insights through augmented reality 
interfaces. 

4.1.2.2 Evaluation 
During the initial development of CBMs, the focus was on creating a general-purpose data/model agnostic 
glass-box solution adaptable to diverse domains. As a result, no formal evaluation was conducted at this 
stage. However, plans are in place to implement a comprehensive evaluation framework in future iterations 
to thoroughly assess the models' performance, interpretability, and practical utility using both quantitative 
and qualitative methods. Possibly the evaluation of CBMs will be covers by the NSAI evaluation. On the 
quantitative side, the evaluation will center on measurable improvements delivered by CBMs. This includes 
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examining predictive performance to ensure that the models maintain high accuracy while enhancing 
interpretability. Key metrics will include prediction accuracy, concept alignment scores, and model 
calibration, all of which measure how well the models align with predefined human-understandable 
concepts and maintain consistent, reliable predictions. Additionally, reductions in misclassified instances 
will be analysed, particularly in tasks where concept-based reasoning plays a critical role. Qualitative 
evaluation will focus on the user experience and the practical application of CBMs in real-world scenarios. 
Focus groups (comprising experts or the end-users) and questionnaires can play an essential role in 
understanding and assessing how well the models align with domain-specific knowledge and whether they 
capture (accurately enough) understandable/truthful concepts. Besides that, surveys can gather feedback 
on the intuitiveness of the system and areas for potential enhancements, setting an emphasis on human-
centered aspects of CBM. 

To assess the practicality and impact of the GPT-based XAI explainer, a survey was conducted with 30 
professionals, featuring 12 questions designed to explore familiarity with AI, Machine Learning (ML), and 
Deep Learning (DL), and perceptions of XAI techniques. This effort provided critical insights into user needs 
and preferences, enabling refinement of the explainer’s features. Participants evaluated explanations from 
traditional XAI methods like LIME, SHAP, and Grad-CAM alongside descriptions generated by the GPT 
explainer. Over 80% preferred the GPT-generated explanations for their clarity and accessibility, 
particularly in decision-making and image analysis tasks. The survey also revealed a gap in AI literacy, with 
over 70% of respondents rating their understanding of AI-based models below 60%, and only 30% actively 
using XAI techniques. Figures Figure 16 - Figure 18 provide further insights into preferences, showing 
variations between end-users and AI experts. While end-users favoured simpler explanations tailored to 
their use cases, experts preferred consistent, detailed outputs aligned with their technical understanding. 

 

Figure 16 – Acceptability correlated with use case by XAI usage 
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Figure 17 – Acceptability correlated with use cases by user type 

 

Figure 18 – Preferences correlated with self-reported comprehension of AI model outputs 

4.1.3 Computational Resource Requirements 
The computational requirements presented here represent typical configurations and are subject to change 
based on the size and complexity of the datasets, as well as specific application needs. For smaller datasets 
or simpler tasks, resource requirements can be significantly reduced, while large-scale deployments may 
demand additional resources. This balanced approach ensures resource efficiency while maintaining 
scalability and adaptability to the diverse needs of the XR5.0 project. The following estimations are based 
on image-based datasets and applications. 

Glass-Box Models: 

• Training: Requires a mid-range GPU (e.g., NVIDIA RTX 3060, 12 GB VRAM), 64 GB RAM, and 500 GB 
SSD. Training typically takes 12–24 hours for datasets with up to 50,000 samples.  

• Inference: Operates efficiently on a CPU (16 GB RAM) or a low-end GPU (e.g., NVIDIA T4) for real-
time tasks, with prediction times of <300 ms per instance. 

Post-Hoc Methods: 

• Training: Minimal resource requirements with a CPU-only setup (32 GB RAM); for visualization 
tasks, a low-end GPU (e.g., NVIDIA T4) is optional. Storage of 250 GB SSD is recommended. 
Explanation generation takes 1–2 hours for 10,000 samples. 

• Inference: Runs on a CPU (16 GB RAM) with explanations generated in 0.5–1 second per instance. 

Custom Explainability Tools: 
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• Training: Typically, CPU-based (32 GB RAM, 500 GB SSD) with no GPU required. Training time is 
around 4–8 hours, depending on dataset size and slicing complexity. 

• Inference: Operates on a CPU (16 GB RAM) with prediction and analysis times of <300 ms per 
instance, supporting 100–200 predictions per second in batch mode. 

4.1.4 Installation and Deployment Guidelines 
Based on interactions with potential stakeholders during the co-creation meetings, the adoption and 
adaptation of tools like the XAI suite often require significant customization to align with existing systems 
and workflows. As a result, the suite’s architecture has been redesigned to provide its functionality “as a 
service” through a modular, microservices-based API. This approach ensures the XAI suite can integrate 
flexibly with pilot-specific systems and tools without altering its core logic or methodology. Each API 
represents an independent microservice responsible for a specific function or set of functions. These 
microservices communicate as needed to complete their tasks. This architecture enhances flexibility and 
scalability, allowing each microservice to be developed, deployed, and managed independently. 
Additionally, this design accelerates development timelines, as microservices can be built in parallel and 
integrated later. 

4.1.5 Demonstration Scenarios and Mapping to Pilots 
Task T4.1 is focused on providing XAI models, primarily for image recognition tasks, for XR5.0’s industrial 
and operational applications. The initial demonstrations will prioritize Pilot 3 (Task 6.4, EKSO pilot) on 
predictive maintenance for smart water pipes at EKSO, Pilot 1 (T6.2, KUKA pilot) on recognizing sensor 
models from images or videos, and Pilot 5 (T6.6, SPACE pilot) for enhancing edge device assembly and 
repair.   

Pilot 1 will demonstrate the application of XAI in recognizing machine states and sensors from image or 
video data, allowing technicians to identify and assess machine states and components efficiently. This 
capability will streamline assembly line workflows by providing clear, interpretable visualizations of 
machine diagnostics and recommendations through AR-enabled tools.  

In Pilot 3, XAI models will process video data converted into frame-by-frame images to detect anomalies in 
smart water pipes. Maintenance technicians will utilize AR interfaces to visualize malfunction indications 
and receive real-time insights on the infrastructure’s condition, enabling precise interventions.  

For Pilot 5 XAI will enhance training and assembly workflows by analysing image data to generate tailored 
instructions, ensuring technicians of varying skill levels receive adaptive and interpretable guidance.  

Additionally, XAI will be integrated with human-digital twins under WP3 to analyse physiological data and 
predict human stress and fatigue levels, crucial for improving operator well-being. This predictive 
capability, coupled with interpretable insights, ensures that both human and operational factors are 
addressed. 

4.1.6 Challenges and Limitations 
The deployment and integration of the XAI suite within the XR5.0 pilots face several challenges and 
limitations, which could impact the demonstration scenarios and pilot outcomes: 

Data Availability and Quality: A significant challenge lies in obtaining sufficient and representative 
datasets for training and evaluation. Many pilots require specific types of data (e.g., video frames for 
predictive maintenance in Pilot 3 or sensor recognition data for Pilot 1), which may not be readily available 
or accessible. Even when data is available, ensuring its relevance, completeness, and quality is a persistent 
issue.  

Varying TRL Levels Across Components: An end-to-end solution for a pilot includes components with 
varying TRLs, ranging from TRL 4 to TRL 6-7. While higher-TRL components have been validated in near-
operational environments, lower-TRL components require further development and testing. This 
discrepancy presents challenges: 
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• The integration of TRL 4 components with more mature parts of the system can delay adoption and 
deployment, as additional validation and refinement may be needed. 

• Users and stakeholders may hesitate to trust or adopt solutions perceived as less mature, impacting 
the overall adoption of XR5.0 components. 

4.1.7 Next Steps 
The next phase of development for the XAI suite focuses on addressing these challenges while advancing its 
integration and applicability across XR5.0’s pilots and components. Key next steps include: 

Implementation and Validation in Pilots: 

• Pilot 1 (Machine States and Sensor Recognition): Test the suite’s application in identifying and 
diagnosing machine states and sensors from image and video data, streamlining workflows with 
clear, interpretable visualizations. 

• Pilot 3 (Predictive Maintenance): Deploy and evaluate the suite’s ability to process video data for 
anomaly detection, providing actionable insights through augmented reality interfaces for 
maintenance technicians. 

• Pilot 5 (User-specific Instructions for Edge Device Assembly): Enhance training and edge device 
assembly by generating tailored, interpretable instructions, ensuring effective guidance for 
technicians of varying expertise levels. 

Integration with WP3 Digital Twins: 

Collaborate with WP3 to incorporate the XAI suite into human-digital twins, enabling the analysis of 
physiological data to predict stress and fatigue levels.  

Collaboration with Related Tasks: 

• Task T4.2 (NSAI): Leverage the context-driven reasoning capabilities of NSAI to transform extracted 
concepts from CBMs into symbolic rules, enhancing decision-making processes. 

• Task T4.3 (GenAI): Utilize generative AI to dynamically generate content and scenarios, improving 
XAI explanations with richer, context-specific insights. 

• Task T4.4 (Explainability Visualization): Refine the visualization of XAI outputs, ensuring they are 
intuitive and accessible for diverse user groups in XR5.0. 

User-Centric Enhancements: 

Further personalize XAI explanations to align with varying levels of domain knowledge, addressing gaps in 
AI literacy and fostering user engagement through the conversational GPT-based explainer.  

Finaly, implement a rigorous evaluation framework combining quantitative metrics (e.g., accuracy, concept 
alignment, and calibration) and qualitative methods (e.g., user feedback and focus groups) to validate the 
suite’s performance, interpretability, and usability in real-world applications. 

4.2 Semantic Methods for Explainable AI 

4.2.1 Brief Survey of State-of-the-Art 
Ontologies: 

An ontology [43] is a structured representation of knowledge, defining a set of concepts within a specific 
domain and the relationships between them. It includes i) classes (or concepts) that represent the general 
categories in that domain, ii) instances (or individuals) that are specific examples of the classes, iii) 
properties (or attributes) that define characteristics or data associated with classes or instances, iv) 
relationships that define how classes and instances interact with or relate to one another, v) rules and 
constraints that specify logical conditions or constraints to ensure consistency and correctness. 
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Ontologies can play a significant role in enhancing XAI models by offering structured frameworks that 
enable AI models to provide transparent, interpretable, and domain-relevant explanations, contributing in 
various aspects: 

1. Knowledge Representation: Ontologies define domain concepts, relationships, and constraints, 
enabling AI systems to operate within a structured and interpretable framework [44] [45]. By 
mapping decisions to well-defined knowledge structures, ontologies ensure that the logic behind AI 
operations can be readily understood and explained [46]. 

2. Reasoning and Inference: Ontologies support reasoning engines that provide step-by-step 
explanations of the logical inferences made by the system. They embed domain rules and 
constraints, enabling AI systems to detect and explain contradictions, ambiguities, or unexpected 
outcomes with logical precision [47]. 

3. Traceability: Ontologies enhance the traceability of AI decisions by recording the sources and 
justifications for data and conclusions [48] [49]. They can enable step-by-step explanations of how 
inputs are transformed into outputs, allowing users to follow the decision-making process in a clear 
and structured manner. 

4. User-Centric Explanations: Ontologies can enable explanations to be customized to the user’s level 
of expertise by using domain-specific terminology and examples [50]. This capability allows AI 
systems to deliver interactive and contextualized explanations that are tailored to the needs of 
different users, enhancing their understanding and trust [51]. 

4.2.2 Role and Functionality 
Context Awareness Framework:  

Context Awareness Framework [52] is a structured system designed to collect, process, and utilize 
contextual data to enable intelligent decision-making and adaptive services. It operates by integrating data 
from various sources, interpreting its meaning within a defined model, and delivering contextual 
information to applications or services in real time. Figure 19 illustrates the components of the framework. 
It integrates a structured approach for managing contextual data, grounded in a formal Context Ontology. 
The framework processes data in a pipeline that includes Context Monitoring, Context Extraction, and 
Context Provision, with outputs feeding into dynamic services and rule-based decision-making systems. 

 

 

Figure 19 – Context Awareness Framework components 
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Context Monitoring: The objective of the Context Monitoring service is to receive raw data and provide 
aggregated monitored data. To achieve this, the Context Monitoring service allows monitoring of systems 
via different interfaces. It is therefore able to “standardise” and correlate the data from distinct systems (e.g. 
map actions from file systems and Web-Services) which later serves as a basis for identification and 
extraction of contexts. 

The main component of the Context Monitoring service is the modular monitoring process, used for all 
monitoring services with an extendable and configurable standardised process. The process is three-parted 
and contains the following modules: 

• Monitoring module, which contains all services to monitor systems and devices in enterprises, via 
the Data Access Layer. The distributed monitoring services also call back this module with their 
gathered information. The monitoring services can be extended and configured for different 
systems and do not need to comply with other modules. 

• Parser module, which contains content parser for the different possible data captured by the 
monitoring services. The parser offers access to the diverse data possible to be interacted with and 
therefore monitored. It provides the access for the analyser and may parse available environmental 
properties. 

• Analyser / Monitoring Data builder module, which correlates the monitored content (and maybe 
environmental properties) and constructs the standardised monitoring data to be stored and 
handed over to the Context Monitoring / Extraction service, or any other service that needs this 
information. 

• Monitoring user behaviour module, which allows monitoring of non-structured sources of 
information (that are not collected by a system/sensor), from the user environment, via different 
interfaces from the Data Access Layer. It is therefore able to standardise and correlate the (e.g. 
usage) data from distinct systems (e.g. map actions from file systems and Web-Services) which later 
serves as a basis for identification and Extraction of Contexts. 

Context Extraction: The objective of the Context Extraction service is to extract and identify high-level 
contexts from the monitored data in the Context Monitoring service (systems and sensor raw data) and this 
information is used to help being more productive and/or economic within (semi-) automated 
environments, as well as for further knowledge enhancement.  

The process identifies the context from the monitoring data provided by the Context Monitoring Service 
(Context Identification), manipulates it through different types of reasoning techniques (Context 
Reasoning), and provides the refined identified context to further services (Context Provision). 

The purpose of Context Reasoning is to produce more accurate and meaningful context out of the identified 
context. Three types of context reasoning are provided, namely Ontological Context Reasoning, Rule-Based 
Context Reasoning and Statistical Context Reasoning.  

• Ontological Context Reasoning explores the semantics of the OWL ontology language and the 
definitions in the context model to infer deductive results out of the identified context.  

• Rule-Based Context Reasoning applies user defined domain specific rules to infer new contextual 
knowledge from the existing contextual knowledge. Thereby the Jena rule engine is used5.  

• The purpose of Statistical Context Reasoning is to determine the current context based on the 
available contextual information and historical contexts. Statistic Context Reasoning does not rely 
on strict logical rules but instead tries to correlate information into possible relations, as suggested 
by the empirical data. 

Context Provision: The extracted context is shared with downstream systems, such as rule generators or 
adaptive services, to enable dynamic responses and intelligent behaviour. Rule generators use the 

 
5 https://jena.apache.org/documentation/inference/#rules 
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provisioned context to create operational rules or triggers. Services leverage these rules to personalize 
experiences, optimize processes, or automate actions based on the current environment. 

4.2.2.1 Component Status 
The Context Awareness Framework is based on the services developed within the EU H2020 project 
SmartClide6 and corresponds to TRL 6. The baseline component - smartclide-context7 - is available as open-
source from the Eclipse OpenSmartCLIDE8 project. 

4.2.2.2 Evaluation 
The Context Awareness Framework extracts and interprets environmental, operational, user-related or 
situational context. This context can be used to generate tailored, situation-specific explanations for AI 
decisions. Furthermore, by monitoring and extracting real-time context, the framework can identify 
relevant contextual features influencing an AI decision, helping XAI systems explain why certain features 
were considered important in a decision and emphasizing the relationship between the input context and 
the output. 

The work of the Context Awareness Framework originated in the H2020 SAFIRE project9. Within SAFIRE, 
the initial framework was developed. In the project it was used to monitor situations within manufacturing 
processes, such as electrical discharge machining and process industry. The knowledge generated by the 
Context Awareness Framework was used in other SAFIRE components to better support the 
reconfiguration of production lines and/or machines. 

In the SmartCLIDE project the Context Awareness Framework was used for gathering knowledge about a 
software development lifecycle within the SmartCLIDE IDE. The SmartCLIDE project was successfully 
finalised in 2023 and validated in three pilot cases. The results from the project were transferred into an 
Eclipse open-source project – Eclipse OpenSmartCLIDE. 

In the AI4Work HE project10, the Context-Awareness Framework is used for the monitoring of AI systems 
and/or robots in order to provide information to make better decisions for sharing work between humans 
and AI/robots. The AI4Work services are currently being underdeveloped and the Early Prototype results 
are expected in mid-2025.  

4.2.3 Computational Resource Requirements 
The computational resource requirements for the system will vary depending on the specific pilot 
implementation. At this stage, only approximate estimates are available, with detailed specifications to be 
provided in subsequent iterations of the deliverable. The preliminary resource requirements are as follows: 

• Num. CPUs >=1 
• Memory >= 1GB 
• Storage >= 1GB 

These baseline values are subject to refinement based on the complexity and scale of the final 
implementation. 

4.2.4 Installation and Deployment Guidelines 
Preconditions to build and run Context Monitoring and Extraction Services: 
To build and run Context Monitoring and Extraction, the following software is required: 

• Java (at least version 11) 
• Apache Maven (at least version 3.5.4) 

 
6 https://cordis.europa.eu/project/id/871177 
7 https://github.com/eclipse-opensmartclide/smartclide-context 
8 https://projects.eclipse.org/projects/ecd.opensmartclide 
9 https://cordis.europa.eu/project/id/723634 
10 https://ai4work.eu 
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• Docker (for running tests and deploying Context Handling on the SmartCLIDE cluster) 
• docker-compose (for running local sample instance only) 

How to build Context Monitoring and Extraction: 
Context Monitoring and Extraction can be built using maven with the following command: 

mvn install 

In order to build and push a container image that can be deployed, the following command can be used: 

mvn install 

mvn jib:build -pl context -Djib.to.image=“${IMAGE_NAME:IMAGE_TAG}” -

Djib.to.auth.username=“${CONTAINER_REGISTRY_USERNAME}” -

Djib.to.auth.password=“${CONTAINER_REGISTRY_TOKEN}” 

How to run Context Monitoring and Extraction: 
A sample configuration and docker-compose file can be found in the samples folder. 

Run the sample with the following command: 

docker-compose -f samples/docker-compose.yml up 

4.2.5 Demonstration Scenarios and Mapping to Pilots 
Within the scope of XR5.0, it is planned that the Context Awareness Framework will support the XAI suite 
with context monitoring, context extraction and rule generation, providing the project pilots with ontology-
based semantic alignment between pilot specific data and the respective XAI models.  

The Context Awareness Framework extracts and interprets environmental, operational, user-related or 
situational context. This context can be used in particularly to generate tailored, situation-specific 
explanations for AI decisions. By monitoring and extracting real-time context, the framework can identify 
relevant contextual features influencing an AI decision, emphasizing the relationship between the input 
context and the XAI output. The Context Monitoring component can support that explanations adapt to 
changes in the environment in real-time. The XAI suite can explain their decisions relative to current 
conditions, enhancing trust in dynamic and uncertain environments. 

The Rule Generator component in the framework can be used to create rules that explain AI behaviour in 
terms of context-sensitive actions. The outputs of the XAI suite can be linked to pre-defined or generated 
rules within a specific context and make the reasoning process traceable and explainable. The generated 
rules can provide structured reasoning for the XAI suite, and enable it to explain its outputs more effectively. 

More specifically, the Context Awareness Framework can support the XAI applications in the XR5.0 pilots 
described in Section 4.1.5 by enhancing XAI models with context-specific information:  

• Pilot 1 (Machine states and sensor recognition at KUKA): The Context Awareness Framework 
can enhance machine states and sensor recognition by identifying the context in which they are 
being used, such as the specific operation of the robot or machine-specific workflows. Such contexts 
can improve the recognition accuracy by pre-filtering irrelevant scenarios or parameters.  

• Pilot 3 (XAI for predictive maintenance of Smart Water Pipes at EKSO): The Context Awareness 
Framework can enhance anomaly detection by enabling the XAI models to explain the anomalies in 
terms of the context in which they occurred, providing a more comprehensive insight for the 
technicians. This can potentially be used to assess the severity of anomalies by combining contextual 
factors with the detected anomaly, and thus to prioritize responses to critical issues. 

• Pilot 5 (Edge device assembly and repair at SPACE): The Context Awareness Framework can 
potentially be used to extract task-specific information, such as the complexity of assembling certain 
components, indicating the number of steps, precision requirements, and potential pitfalls. The XAI 
model can use this context to adjust the level of detail in the instructions it provides. The extracted 
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context on task complexity can be useful for the XAI models to diagnose and explain the root cause 
of these errors. 

4.2.6 Challenges and Limitations 
Several challenges and limitations should be acknowledged and addressed when integrating the Context 
Awareness Framework with the XAI suite within the scope of the XR5.0 pilots: 

Ontology Development and Semantic Alignment: Developing and maintaining a robust ontology for 
semantic alignment between pilot-specific data and XAI models is time-consuming and requires domain-
specific expertise. Overly complex ontologies may introduce inefficiencies in processing, while simplistic 
ones may fail to capture critical nuances. Ensuring semantic alignment across diverse pilot scenarios (e.g., 
smart water pipes, sensor recognition, and edge device assembly) is challenging due to the diversity of 
contexts. Poorly designed ontologies could result in misaligned data, reducing the effectiveness of context-
driven explanations and rule generation. 

Data Quality and Context Accuracy: The accuracy of the extracted context depends heavily on the quality 
and reliability of input data from sensors, devices or user interactions. Noisy, incomplete or unreliable data 
can lead to incorrect context extraction and rule generation. Erroneous context extraction can result in 
misleading rules and explanations, which reduce trust in the system. 

Scalability in Dynamic Environments: In dynamic systems, context is constantly changing, requiring the 
framework to scale and adapt quickly to process large amounts of contextual data in real time. Processing 
delays may arise due to the complexity of monitoring, extracting, and reasoning about context. Scalability 
issues can occur in large-scale systems with numerous sensors or data sources. Delays in real-time 
explanations can frustrate users or render the explanations obsolete in fast-changing scenarios. 

4.2.7 Next Steps 
Implement Pilot-Specific Ontologies: The first step is to engage experts in each pilot, sensor systems 
(Pilot 1, T6.2, KUKA), smart water infrastructure (Pilot 3, T6.4, EKSO) and edge device assembly (Pilot 5, 
T6.6, SPACE), to ensure that ontologies are tailored to domain-specific requirements, using a modular 
approach and ensuring each pilot has a dedicated and manageable ontology that addresses pilot-specific 
needs.  

Implement Pilot-Specific Context Monitors: After the definition of pilot-specific ontologies, the next step 
is to design and deploy monitoring systems to capture relevant contextual data from sensors, devices, and 
user interactions. This process requires that the implemented monitors can handle dynamic environments 
and provide real-time inputs for further processing. 

Implement Pilot-Specific Context Extraction: After the implementation of pilot-specific context monitor, 
the next step is to process and extract meaningful context from the monitored data.  

Implement Pilot-Specific Rule Generation: Using the pilot-specific contexts that are extracted, context-
sensitive rules will be generated. These rules should link contextual data to explanations that are inferenced 
based on the pilot-specific contexts, ensuring relevance and precision for the XAI suite's recommendations 
and explanations. 
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5. CONCLUSIONS  
Deliverable D4.1 has demonstrated significant advancements in innovative AI methodologies for XR-based 
human-AI collaboration to achieve the vision of XR5.0, emphasizing trustworthiness and efficiency across 
industrial applications. Through the outcomes of Tasks T4.1, T4.2, and T4.3, the deliverable presented 
different advanced AI paradigms to enhance operational processes and industrial workforces in digitally 
augmented environments. 

Task T4.1 has presented an Explainable AI (XAI) suite that ensures transparency and interpretability in 
industrial settings. By leveraging state-of-the-art methodologies, such as Concept Bottleneck Models, SHAP, 
and Grad-CAM, the XAI models provide user-centric, context-aware insights to foster trust and improve 
decision-making. The inclusion of the Context Awareness Framework has the potential to further 
strengthen the suite by enabling real-time, context-driven explanations. XAI applications are still being 
explored and are in the early stages of pilot implementation, including predictive maintenance, sensor 
recognition, and instructions for edge device assembly and repair. 

Task T4.2 has demonstrated substantial progress in advancing Neurosymbolic AI (NSAI) and Active 
Learning (AL) components for XR-enabled human-AI collaboration. By synergizing neural networks and 
symbolic reasoning, NSAI enhances explainability and adaptability, while AL introduces a human-in-the-
loop approach to improve algorithmic accuracy and user understanding. Both components have 
demonstrated use cases for early pilot implementations, such as object detection and anomaly classification. 

Task T4.3 has demonstrated Generative AI capabilities for XR environments focusing on the creation of 
context-aware, domain-specific solutions for industrial collaboration and training. The use of large language 
models (LLMs) and vector databases demonstrate practical applications in visual inspection and anomaly 
detection training, condition-based maintenance and remote support integration within the XR5.0 pilots, 
improving training efficiency and operational outcomes. 

Across these tasks, the deliverable highlights the integration of explainable, adaptive and Generative AI 
models within XR platforms, creating a versatile AI toolkit to meet the diverse needs of XR5.0 pilots. This 
cohesive approach aims to deliver transformative solutions that enhance human-AI collaboration, promote 
transparency and trust, and drive industrial innovation.  

Future work across Tasks T4.1, T4.2 and T4.3 will focus on advancing the XAI suite, NSAI and AL integration, 
and custom Generative AI-based solutions to address the specific needs of XR5.0 pilots. T4.1 will work on 
early pilot implementations and focus on extending the XAI suite’s applicability across different pilots. This 
task will strengthen collaboration with WP3 to integrate human-digital twins for physiological data analysis 
and incorporate insights from NSAI and Generative AI to enrich explanations and decision-making. T4.1 will 
also refine visualization strategies for robust performance validation. T4.2 will integrate NSAI with AL to 
enhance object detection and outlier analysis. Future efforts will focus on full pilot implementations and 
real-time operational capabilities in XR environments to ensure seamless communication between AI and 
XR components for effective anomaly detection and decision support, and extend their application to other 
X5.0 pilots.  

T4.3 will emphasize user-centric improvements, adapting Generative AI-based solutions to diverse XR5.0 
pilot needs through custom indexing and knowledge modelling for specific domains like robotics and 
industrial training. Performance optimization will include personalized responses, LLM-based monitoring 
frameworks and API integrations to extend capabilities across XR5.0 applications. Future efforts will 
prioritize adapting the architecture to meet the unique needs of each pilot, optimize personalization 
features, and integrate advanced monitoring frameworks in order to enhance system robustness and 
relevance to achieve higher TRLs and deliver robust, scalable solutions. 

The continued focus on pilot-specific refinements, full pilot implementations and pilots validation will 
ensure the successful deployment of these technologies and bridge the gap between cutting-edge AI and XR 
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research in real-world applications. The outputs of D4.1 will contribute to further developments and 
refinements in advanced AI paradigms for human-AI collaboration to be presented in D4.2, the second and 
final version (v2) of D4.1, which will follow on M27.  
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